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Abstract

This research ties together computational and experimental analysis of two types

of high-impedance ground plane (HIGP) antennas. One type of antenna consists of a

proposed two-layer design. The structure consists of a bowtie antenna mounted over the

surface of a HIGP. The proposed structure was intended to achieve a resonant frequency of

3 GHz and a bandwidth of 48%; however, a design error results in a significant mismatch

in operating bands between the antenna and HIGP. Experimental results indicate the struc-

ture performs poorly across the entire measured band of 2-5 GHz. A new two-layer design

is developed and presented. The new design takes advantage of lessons learned such as

designing around material properties of readily available materials.

Analysis of integrated, or one-layer, HIGP antennas are also presented. The one-

layer versions utilize the exact same design parameters as their corresponding two-layer

designs; the bowtie radiating element is simply positioned in the plane of, rather than over,

the HIGP. Results indicate the design error in the proposed two-layer structure affects

the performance of the one-layer version less than the two-layer antenna. A comparison

between the original and new integrated HIGP antennas show an improvement in input

impedance, but a decrease in bandwidth.

xi



ANALYSIS OF BROADBAND HIGH-IMPEDANCE GROUND PLANE

ANTENNA DESIGNS

I. Introduction

Aircraft antennas are instrumental in supporting airborne missions. The functional

requirement of any antenna, whether land, sea, or air based, is to effectively transmit

and/or receive electromagnetic energy between distant locations. Yet each type of antenna

has its own set of design constraints. Since the birth of wireless, land based antennas of all

shapes and sizes have been developed to effectively transfer energy between distant points.

Some are relatively simple, such as the common dipole antenna found on an AM radio.

Others are quite extravagant–and expensive–such as the 305-meter spherical reflector at

the Arecibo Observatory in Puerto Rico. On the other hand, airborne antenna designs have

much less flexibility in size, weight, and often in cost. Furthermore, in many applications

such as communication, navigation, remote sensing, etc..., an antenna must effectively op-

erate over a wide frequency band. Like land based antennas, many types of airborne an-

tennas exists that satisfy their intended tasks. The High-Impedance Ground Plane (HIGP)

enhanced antenna is one type of design that satisfies many current airborne antenna re-

quirements, and perhaps more importantly, may satisfy more demanding requirements of

future platforms. The HIGP antenna is compact, relatively light, inexpensive, and may be

ideal for low observable (LO) aircraft.

1



1.1 Background

In the development of modern aircraft, the Air Force puts increasingly more strin-

gent requirements on LO designs. In other words, aircraft must be less detectable by

radar, optical, and acoustic sensors. Much effort is put into reducing the radar cross sec-

tion (RCS) of a platform. Knott defines RCS of a system [target] as “the projected area

of a metal sphere that would scatter the same amount of power in the same direction that

the target does” [6]. An important point is that a system’s RCS is the one parameter in

the radar detection process that an LO engineer may influence. One method of reduc-

ing RCS is to minimize the number of structures protruding from an aircraft, i.e., storing

bombs and missiles inside an aircraft rather than on its wings. The same principle can

be applied to the design of antennas. The HIGP antenna may be an ideal solution for LO

antenna designs. In 1998, Sievenpiper introduced the HIGP as a novel structure that be-

haves like a perfect magnetic conductor (PMC) in the radio frequency (RF) spectrum [14].

The HIGP concept is an extension of the photonic band-gap (PBG) concept introduced by

Yablonovitch in 1987 [20]. The HIGP exhibits two characteristics that may lead to a LO

antenna design:

1. The HIGP reflects electromagnetic waves in phase with incoming waves.

2. The structure does not support surface traveling waves.

Since it reflects waves in phase with incoming waves, the HIGP can be designed as

a conformal antenna, i.e., it can be flush with, rather than protruding from, the surface of

an aircraft. Conformal designs reduce RCS. Unlike existing conformal antennas such as

cavity-backed antennas, the HIGP may benefit from additional RCS reduction due to its

ability to suppress surface traveling waves. Surface traveling waves are waves that travel

along a metal surface and scatter (radiate) from its edges. This undesirable phenomenon

not only degrades the performance of antennas, but also adds to their RCS. Although they

may provide new opportunities in the design of LO antennas, current HIGP structures have

some barriers to overcome.

2



1.2 Problem Statement

The HIGP antenna has two characteristics that prevent its use in many applications.

First, the antenna has a narrow bandwidth. In this report, bandwidth is defined as the

frequency range over which an antenna efficiently operates i.e. the range that the voltage

standing wave ratio (VSWR) of the antenna is 2:1 or less. Sievenpiper’s original design

exhibited a bandwidth of 5%. Current designs have stated bandwidths on the order of

10% to 20%. Narrow band antennas are satisfactory for many airborne applications, but

some systems require large bandwidths. In fact, some systems, such as communications,

navigation, and radar systems, require an antenna with a bandwidth greater than 100%.

Second, predictions from numerical modeling often do not agree with measurements of

actual HIGP antennas. Modeling is especially inaccurate in the prediction of the antenna’s

bandwidth [15]. Although it can rely solely on prototype testing, the antenna design pro-

cess is less time consuming and costly with the aid of accurate computer modeling. If

these shortcomings can be resolved, the HIGP may be an ideal solution for many Air

Force applications.

This thesis is a continuation of a two-layer HIGP antenna design proposed by Wilm-

hoff [18]. The design has neither been tested through experimental, nor computational

means. It is based on a HIGP designed to resonate at 3 GHz with a bandwidth of 48%, and

a broadband radiating element designed for a center frequency of 3 GHz. One potential

and one known problem are explored. First, the proposed antenna is based solely on design

equations–it is not supported by any type of analysis. Second, a deficiency exists in the

modeling process which prevents computational modeling of the antenna structure [19].

As described during an interview with Wilmhoff, the HIGP and antenna structures can

be modeled separately, but software limitations prevent modeling the integrated structure.

This deficiency prevents analyzing the near field effects, or mutual coupling between the

two layers.

3



1.3 Research Goal

The Wilmhoff design may lead to a successful broadband HIGP antenna, but time

constraints ended his research. The primary goal of this research is to evaluate the pro-

posed broadband HIGP antenna. Success is based not only on the extent of experimental

and computational results obtained, but also on the correlation in results between the two

methods.

1.4 Assumptions

Two categories of assumptions exist in this thesis. Several derivations include as-

sumptions inherited from cited references, i.e., in equations developed by other authors.

Additional assumptions made in this research are the following:

1. Dielectric materials are lossless, linear, homogeneous, isotropic, and nondispersive.

2. Metals are perfect electric conductors.

3. Transmission lines have a characteristic impedance of 50 Ω.

Within the measured frequency bands in the research, the substrate materials se-

lected for the prototypes are designed to exhibit the dielectric approximations listed. The

metallic structures of the prototypes are either copper or aluminum. Both type of metals

have conductivities that allow for a reasonable approximation as perfect electric conduc-

tors. In addition, the measurement equipment and computational methods are designed to

exhibit a 50 Ω characteristic impedance.

1.5 Scope

The primary objective of this research is to demonstrate a HIGP antenna operating

over a wide frequency band. The development of the antenna prototype is based on the

antenna design presented in Wilmhoff’s thesis. The antenna has the following expected

parameters: center frequency of 3 GHz and bandwidth of 48%. One of the main tasks

of this thesis includes developing a work-around for a software deficiency. The meshing

4



software must allow evaluation of the entire structure as a whole. Computational modeling

must closely match the prototype for a valid comparison of results. A secondary goal is to

develop a one layer version of the antenna–placing the antenna in the plane of the HIGP.

This one-layer concept as presented by Golla [4] simplifies the fabrication process and

reduces costs. The primary figure of merit of each antenna is the 2:1 VSWR bandwidth,

or -9.5 dB return loss, depending on the particular measurements involved.

1.6 Resources

This research utilizes computational resources, fabrication materials and equipment,

and measurement equipment. Specific requirements include:

1. High performance computing capability.

2. A FORTRAN 90 Compiler, CADStd c©, MATLAB c©, Dfx2xyz c©, SkyMesh2 c©,

WIPL- D c© and Prism software packages.

3. Milling and chemical etching equipment along with associated supplies.

4. Printed circuit board (PCB) and coaxial feed materials.

5. A network analyzer, antenna test range, and RCS test range.

1.7 Overview

This thesis presents theories related to the HIGP, methodologies in evaluating their

designs, RCS analysis, and finally experimental and computational results of several HIGP

antennas. Chapter II provides a literature review focusing on bandwidth and computa-

tional methods. An in-depth RCS analysis of a HIGP as a reflector is presented in Chap-

ter III. Chapter IV describes the methodology used in testing and evaluating HIGP antenna

designs. Chapter V presents results and analysis of tested antenna designs. Finally, a brief

set of conclusions and recommendations for future research is presented in Chapter VI.

5



II. Literature Review

In 1998, Sievenpiper introduced the HIGP as a novel structure that behaves like a perfect

magnetic conductor (PMC) in the radio frequency (RF) spectrum [14]. The HIGP concept

is an extension of the photonic band-gap (PBG) concept introduced within the physics

community in 1987 [20]. Many articles in fact refer to the HIGP as a PBG structure.

Although it provided new opportunities in the design of electromagnetic devices, the HIGP

structure had two characteristics that prevented usage in many applications:

1. The structure exhibited a narrow bandwidth.

2. Computational modeling was unable to predict the bandwidth [15].

By resolving these shortcomings, the HIGP may be an ideal solution for many Air

Force applications.

Over the past five years, variations of HIGP structures have emerged. Several of

these are examined with the following questions in mind: which design provides the

largest bandwidth; which numerical technique best predicts measured bandwidth results.

Before comparing various designs, a derivation of the HIGP surface model may provide a

basis for evaluation.

2.1 The High Impedance Surface Model

Two material modeling techniques are used in the derivation of the HIGP. The ef-

fective reflection plane (ERP) method is used to define its reflective wave behavior. The

phase of the reflective wave, as seen in the far field, is compared to that of a PEC reference

plane. Using the phase comparison, the effective bandwidth is defined as the frequency

band between the −90◦ and 90◦ phase difference. Referring to Figure 1, a representa-

tive HIGP reflection measurement may contain a 360◦ phase reversal over an extended

frequency band. On the other hand, the reflection from a PEC surface is a constant −180◦.

6



Figure 1 Reflection phase of a HIGP with a resonant frequency of 15 GHz, and an effective
operating band from 10 GHz to 20 GHz, Sievenpiper [15].

The effective medium model is another technique used to describe a HIGP. The

model enables a derivation of the effective permittivity of a ground plane. Sheet capaci-

tance can then be derived through conformal mapping techniques. In his dissertation [14],

Sievenpiper utilizes the effective medium and ERP models to develop properties of a high

impedance ground plane, see Figure 2.

The resonant frequency and bandwidth are derived from the effective sheet inductive

and capacitive properties, which themselves are derived through conformal mapping of the

electromagnetic properties and geometry of the structure.

Sievenpiper used circuit theory to develop fundamental properties of the HIGP. As

shown in the parallel circuit model in Figure 3, the inductance is only a function distance

7



Figure 2 “Thumbtack” high-impedance ground plane geometry, Sievenpiper [15].

between the surface and ground plane given by

L = µrµ0t (Henrys/square) (1)

where L is the sheet effective inductance, µr is the relative permeability of the dielectric

material, µ0 is the permeability of free space, and t is the substrate thickness.

The capacitance of individual elements is a function of both the surface geometry

and the material properties given by

Ce =
w(ε1 + ε2)

π
cosh−1

(

a

g

)

(Farads) (2)

where Ce is the capacitance of an individual element, w is the edge length of an element,

ε1 is the permittivity of a free space, ε2 is the permittivity of the substrate, g is the gap

between elements, and a is the center-to-center spacing between the vias, see Figure 4.

Figure 3 Parallel circuit model of thumbtack design.
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Figure 4 HIGP Element Design Parameters.

Sheet capacitance is then obtained by multiplying the individual element capaci-

tance by a scaling factor given by

C = Ce × F (Farads/square) (3)

where C is the sheet capacitance, and F is a factor determined by the geometry of the

HIGP elements.

Sievenpiper provides the scaling factor of square, hexagonal, and triangular ele-

ments as equal to 1, 1/
√

3 , and
√

3 respectively. Using circuit theory, the surface impedance

of the parallel LC circuit model is

Z =
j ωL

1 − ω2LC
(4)

where Z is the surface impedance, ω is the frequency in rad/sec, and L and C are the

sheet inductance and capacitance respectively. Again using circuit theory, the resonant

frequency, ω0 occurs at

ω0 =
1√
LC

(5)

9



which causes |Z| → ∞ (“High Impedance”). Finally, Sievenpiper derives the HIGP ERP

based bandwidth as

BW =

√

µr

εr

· t
w

(6)

Choosing a material with a relative permeability of one and integrating an existing

antenna (i.e., w is predetermined,) leaves only two variables (εr and t) in the bandwidth

design.

2.2 HIGP Bandwidth Design

Armed with Equations (5) and (6), one may idealistically design a HIGP of great

bandwidth centered about any desired frequency; however, an examination of several de-

signs proves otherwise.

Early in his research, Sievenpiper achieved a bandwidth of 5.4% for an antenna op-

erating at 14.75 GHz [10]. His prototype was constructed on a dielectric with a relative

permittivity of 10.2 and thickness of 25 mils (1 mil = 0.001 inches). Although the proto-

type’s bandwidth is three times wider than that of a conventional patch antenna, it remains

unusable for wideband applications.

Coccioli achieved antenna designs with predicted bandwidths of 21.3% and 11.5%

using Finite Difference Time Domain (FDTD) modeling [3]. A bandwidth of 11% is a

benchmark in HIGP design; a bandwidth of 21% would represent a significant advance in

HIGP technology. Unfortunately, only the 11% bandwidth design is demonstrated through

experimental means. In addition, Coccioli’s HIGP measured results do not match the

predicted values. His variation of the HIGP, termed a uni-planar compact photonic band-

gap (UC-PBG), is based on a dielectric of high permittivity (εr = 10.2) and thickness

of 25 and 50 mils respectively for the 21% and 11% bandwidth designs. Contrary to

Sievenpiper’s HIGP design, Coccioli’s design provides a bandwidth that decreases with

an increase in dielectric thickness. Some recent designs do not result in such advances,

but rather decrease HIGP performance-at least from the perspective of bandwidth.
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Ali proposed a HIGP patch antenna that provides a 60% increase in bandwidth over

a conventional patch antenna [1]. The design utilizes a dielectric with a relative permit-

tivity of 3.38 and thickness of 59 mils. Numerical results indicate the relative increase in

bandwidth of 60%; however, conventional patch antennas have very narrow bandwidths-

on the order of 1.2%. The proposed HIGP design provides a restrictive 2.8% bandwidth.

On the other hand, a small bandwidth is not necessarily the result of an ineffective design.

Salonen, Keskilammi, and Sydanheimo demonstrate a low cost PBG patch antenna

that extends the bandwidth of a conventional patch antenna by a factor of three [12]. The

resulting PBG antenna has only a 100 MHz bandwidth centered at 2.45 GHz, but this

4.7% bandwidth covers 100% of its intended operating band. The design uses a 59 mil

thick FR-4 substrate with a dielectric constant of 4.9. Unfortunately, although the antenna

meets its intended bandwidth specifications, an evaluation of the design method cannot

be accomplished due to a lack of information. Neither analytic derivation nor numeric

predictions are provided.

Along the same lines, Golla provides extensive experimental research into broad-

band HIGP designs [4]. Several different designs incorporating a printed log-periodic

dipole over a HIGP were fabricated and tested. The goal was to design a HIGP bandwidth

to accommodate the 2 to 18 GHz operational band of the log-periodic antenna. One design

did perform well when limited to receive mode. One of the most interesting outcomes of

the research is what Golla refers to as an integral antenna design, see Figure 5. The con-

cept is to integrate an antenna structure into the plane of the HIGP surface, rather than

over the surface. A version of this one-layer is presented in Chapter V of this thesis.

In an age where antenna design relies heavily on computer modeling, measurements

by themselves are not enough. Accurate numerical methods reduce the amount of time and

cost of the design process.
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Radiating ElementHIGP Elements

Figure 5 One-arm of a log-periodic antenna integrated into a HIGP [4].

2.3 Numerical Evaluation

In one of the most frequently cited HIGP articles [15], Sievenpiper et al presents a

detailed analysis of his original HIGP design. Results of computer modeling, using the

Finite Element Model (FEM), validate the design. The modeling predictions compare very

well with both analytic and measured results in all but one area. Sievenpiper points out

that the numerical result “does not predict an actual band-gap” [15]. The authors resort

to predicting bandwidths indirectly by extrapolating phase data with measured bandwidth

results. Since the FEM numerical method does not allow direct predictions of bandwidth,

other techniques must be explored.

In another article [10], Sievenpiper refers to FDTD in modeling his HIGP. He points

out that FDTD was used in optimizing the antenna design but does not mention how well

predicted values of bandwidth compare to measured results. More than one paper has

prevented the evaluation of numerical modeling by either focusing solely on the modeling

itself, or just on the measured results.
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A design exhibiting a bandwidth of 20% was developed by Rahman and Stuchly [11].

Again, FDTD was used in optimizing the antenna structure. In this case, no prototype was

constructed, and therefore, no comparison of measured results is possible.

Ali used a FEM based program, High Frequency Structure Simulator (HFSS), to

model his HIGP antenna design [1]. He describes the design in great detail, but does not

include any measured results of the prototype. Numerical results alone do not enable eval-

uation of his HFSS model; a comparison of measured versus predicted results is necessary

for proper validation. Others have produced large amounts of both predicted and measured

data, but with disagreements between the two.

During his thesis work [18], Wilmhoff utilized a custom FEM code developed at

Michigan State University to model an HIGP antenna design. Interestingly, the code

(Prism) does not correctly predict the measured bandwidth of the integrated HIGP an-

tenna structure; however, it accurately predicts the bandwidths of the antenna and HIGP

structures individually. In a personal interview [19], Wilmhoff explained the inability of

Prism to model complex multi-layered structures. He suggests using separate modeling

programs to optimize the antenna and HIGP structures separately, then use Prism to run

simulations of the integrated structure. This is the modeling approach used within this

thesis.

2.4 Conclusion

This review examined several different HIGP antennas that increase antenna band-

width. Demonstrating a bandwidth of 10%, Coccioli’s UC-PBG design clearly achieves

best results [3]. In addition, he models a design having a 20% bandwidth. If successfully

developed, Coccioli will achieve a great breakthrough in HIGP antenna design. Sieven-

piper achieves a bandwidth of 5% during a follow-on effort to his original design [10].

Although the bandwidth is on the same order as the original HIGP, he achieves greater

power gain from the antenna. Recent designs by Ali [1], and Salonen [12] also achieve

bandwidths on the same order as Sievenpiper’s original HIGP antenna. After examining
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all four designs, Coccioli’s UC-PBG design demonstrates the largest bandwidth of HIGP

antennas. Can these designs be accurately modeled?

The question as to which numerical technique best predicts measured bandwidth

of an HIGP antenna is not clearly answered. Five modeling examples were examined.

Versions of FDTD [10, 11] and FEM [1, 15, 18], were used in modeling the antennas. In

both cases of the FDTD modeling, predicted values are not compared to measured results

thus the accuracy of FDTD modeling cannot be evaluated. Along the same lines, the

HFSS simulations are not compared with measured data. On the other hand, two cases

involving the FEM code are backed with adequate measured data. During Sievenpiper’s

research, the predictions from FEM compared well with all measured data but was unable

to directly predict a bandwidth value [15]. The method lacks the ability to predict the very

parameter that this research is focused on. The version of FEM code used by Wilmhoff

also demonstrated some limitation in modeling an HIGP antenna. The limitations in this

case involved more than just bandwidth predictions. In fact, Wilmhoff suggests using

other modeling processes to supplement the FEM based modeling. Of the five cases, the

FEM modeling code appears to be the most accurate numerical technique. Its limitations

are known and may be overcome by modifying, or supplementing, the code.
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III. Radar Cross Section Characterization

Chapter II provided insight into attainable bandwidths of high impedance ground planes.

Chapters IV and V develop methodology and provide results of HIGP antenna designs

intended to set a new benchmark in bandwidth. This chapter characterizes a HIGP design

as a PMC reflector. Scattering analysis is used to compare the traveling wave suppression

and radar cross section (RCS) reduction capability to those of known targets.

3.1 Introduction and Objectives

A square perfect electric conducting (PEC) plate can have significant RCS contri-

butions from surface traveling waves. A key feature of a HIGP is its theoretical ability to

suppress such traveling waves. Consequently, a HIGP may have a lower RCS than a PEC

ground plane of the same dimensions. The objective of this chapter is to characterize the

HIGP’s impact on RCS as follows:

1. Does the HIGP completely suppress surface waves at its resonant frequency?

2. Does the HIGP suppress surface waves at its cut-off frequencies?

3. What impact on RCS does the HIGP have relative to an equivalent PEC plate?

4. Does the HIGP alter scattering parameters such as beamwidth and side lobe levels?

The Air Force Institute of Technology’s RCS range is used to observe and measure

the RCS of a HIGP and a magnetic radar absorbing material (RAM) treated aluminum

plate. The HIGP is constructed using a hexagonal element pattern described in chapter II.

The second target contains RAM on only one surface. The opposite surface (aluminum)

provides a PEC reference plate. The targets are measured at different aspect angles (pattern

cuts), and frequencies (frequency sweeps). The pattern cuts are measured at the HIGP

resonant frequency, and lower and upper cut-off frequencies of 13.2, 10.5, and 16.0 GHz

respectively. Frequency sweeps are conducted at normal incidence and traveling wave

peak gazing angles relative to the resonant and cut-off frequencies.

15



 

 

Axis of Rotation 

0 degrees 

Radar 

Sample 

Absorber 

Foam Column 

Front View Top View 

Figure 6 Target orientation for RCS measurements.

3.2 Procedures and Setup

AFIT operates an indoor RCS range facility. The range is an open-air, direct illu-

mination facility with a frequency range of 6.2-18.2 GHz. Dimensions of the anechoic

chamber are approximately 45′ × 24′ × 26′ with a tapered ogive pedestal in the center.

The horn antenna and target center are 27’ apart, both at a centerline height of eight feet

above the floor, see Figure 6 for target orientation. The range uses a Lintek 4000 system.

The radar and the target pedestal are computer driven via a Mission Research Corpora-

tion (MRC) software graphical user interface. The software allows automated control of

frequency, angle and polarization configurations for each measurement.

3.2.1 Test Items. Test items include two 6” × 6” flat plates, see Figure 7.

The HIGP is constructed on a 59 mil (1.499 mm) thick FR-4 substrate and based on a

hexagonal element design, see Table 1 for list of design parameters. Using the values

in Table 1 for Equations (5) and (6) in Section 2.1, the HIGP has a nominal resonant

frequency of 13.2 GHz and bandwidth of 41.5%. Its surface contains two defects (cavities)

were hex elements where removed. The cavities are 0.15” in diameter and located 1” from

upper left corner of the HIGP as viewed broadside.
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(a) Target 1 front.

 

(b) Target 1 back.

 

(c) Target 2 front.

 

(d) Target 2 back.

Figure 7 Test targets: Target 1, (a) HIGP front, (b) copper back; Target 2, (c) RAM front, (d)
Aluminum back.

Table 1 HIGP Target Design Parameters.

Parameter Symbol Value
Substrate thickness t 1.499 mm

Relative Permittivity εr 4.9
Element Edge Length w 1.524 mm

Element Spacing g 0.254 mm
Via Spacing a 2.640 mm

Correction Factor F 1/
√

3

Data on the RAM performance is limited. The only specification known is that

it provides a 10 dB power reduction at normal incidence over the 4 to 10 GHz band.

Although most of the tests are conducted at frequencies above 10 GHz and angles other

than broadside, a -10 dB value is used in each test configuration to estimate the RAM

reduction.

3.2.2 Test Procedures. The targets were tested according to the test matrix

shown in Table 2. All tests were performed in horizontal polarization. Each tests included

background clutter measurements to account for RCS from: chamber and pedestal hard-

ware, target and calibration mounts (styrofoam), and calibration target. The calibration

target is a 6” diameter sphere. The measured coherent data, proportional to the back-
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catter power, was combined with the calibration target’s theoretical solution through the

following

σcal =
σtgt − σtgt.bck

σcal.tgt − σcal.tgt.bck

σthy (7)

where σtgt is the target data, σtgt.bck is the target background data, σcal.tgt.bck is the cali-

bration background measurement, and σcal.tgt and σthy are the measured and theoretical

values of the 6” sphere calibration sphere.

Table 2 RCS Test Matrix.

Target1 F [GHz] Az [deg.]2

1 10.5 0-360
1 13.2 0-360
1 16.0 0-360
2 10.5 0-360
2 13.2 0-360
2 16.0 0-360

HIGP 6.2-18.2 0.0
HIGP 6.2-18.2 17.2
HIGP 6.2-18.2 18.9
HIGP 6.2-18.2 21.2
RAM 6.2-18.2 0.0
RAM 6.2-18.2 17.2
RAM 6.2-18.2 18.9
RAM 6.2-18.2 21.2
PEC 6.2-18.2 0.0
PEC 6.2-18.2 17.2
PEC 6.2-18.2 18.9
PEC 6.2-18.2 21.2

All target, background, and calibration measurements were completed within a short

time of each other to minimize error associated with radar “drift” or thermal interference.

In addition, background and calibration data were collected for each combination of fre-

quency and polarization in the test matrix.

1All target measurements conducted in horizontal polarization.
2Azimuth of 0◦ represents target broadside.
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Finally, an accurate target RCS was obtained through post processing. All measured

data for each configuration was read into the MRC Software, which corrects the target data

using Equation (7) and generates plots.

3.3 Predicted Values

Knott et al provide “hip pocket” formulas enabling accurate RCS predictions for

simple targets [6]. The calculations depend only on target geometry and incident wave-

length. Where appropriate, a 10 dB reduction from RAM is incorporated into the formu-

las. Using a constant 10 dB reduction for all frequencies and angles introduces errors, but

simplifies the predictions in the spirit of “hip pocket” formulas.

The first consideration is the presence of traveling waves. The peak grazing angle

at which such waves occur is given by

θpk−tw = 49

√

λ

L
(8)

where θ is the grazing angle in degrees, λ is the incident wavelength, and L is the physical

side length in meters. The surface traveling wave RCS magnitude is no greater than:

σpk−tw ≤ 3λ2 (9)

Estimates for the specular RCS are provided by

σPEC = 4π

(

Area2

λ2

)

(10)

σRAM = 10 log
10

(σPEC) − 10dB (11)

where σPEC , and σRAM represent specular RCS of the PEC plate, and RAM coated plate

respectively. The specular RCS of HIGP plate is not predicted as it contains a textured

surface of metal and dielectric. Additional values of interest include the edge diffrac-

tion and beamwidth. In reference to Figure 6, edge diffraction occurs during horizontal

19



polarization and is predicted as

σedge =
L2

π
(12)

where L is the physical edge length in meters. Finally, the approximate scattered beamwidth

is given by

BWnull−to−null = 57
λ

L
(13)

where BW is beamwidth in degrees. All predicted values, along with measured results,

are listed in Tables 3 and 4 in Section 3.4.

3.4 Results and Analysis

Several observations can be made about the HIGP’s ability to reduce traveling waves

and RCS. All measurements indicate that the HIGP provided a significant reduction of

traveling waves at its resonant frequency. Table 3 provides a summary of the predicted

and measured traveling waves for each target. At its resonant frequency, the HIGP had a

peak traveling wave of -33 dB. The pattern-cut results show the HIGP provided a 11 dB

reduction compared to the PEC plate and a 6 dB reduction compared to the RAM plate,

see Figure 8. At its cut-off frequencies, the HIGP had the same peak traveling wave levels

as the PEC plate.

Table 3 Predicted and Measured Surface Traveling Wave (TW).

σpk−twTarget F [GHz] θpk−tw [deg.]
Predicted Measured

PEC 10.5 21.2 -26.1 -20
PEC 13.2 18.8 -28.1 -22
PEC 16.0 17.2 -29.8 -19
RAM 10.5 21.2 NA -27
RAM 13.2 18.9 NA -27
RAM 16.0 17.2 NA -26
HIGP 10.5 21.2 <-26.1 -22
HIGP 13.2 18.9 �-28.1 1 -33
HIGP 16.0 17.2 <-29.8 -22

1A HIGP theoretically does not support surface traveling waves at its resonant frequency.
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As shown in the downrange plots in Figure 9, the HIGP trailing edge return was

nearly three times lower than that of the PEC target when the targets were oriented at

the expected peak grazing angles. The results are not entirely valid since the downrange

plots were based on a broadband measurement. The plots were formed through a discrete

Fourier transform (DFT) of a 6-18 GHz frequency sweep measurement of each target. On

the other hand, the HIGP has a predicted bandwidth of only 10-16 GHz. The reduction in

the far edge return of the HIGP may be lower if measured only within its operating band.

The frequency sweeps alone reveal distinct differences in scattering behavior be-

tween the HIGP, PEC, and RAM plates, see Figure 10. The HIGP response consists of a

lobing pattern of fairly constant peaks until it reaches its resonance frequency (13.2 GHz).

In fact, below its lower cut-off frequency, the HIGP response closely resembles that of

the PEC plate. The HIGP may look like a solid plate to long wavelengths–similar to a

wire grid antenna. Beyond resonance, the RCS steadily drops–up to 10 dB lower than the

RAM treated target in some cases. At frequencies above its cut-off frequency, the HIGP

response closely tracks that of the RAM target. One possible explanation for this behavior

is that short wavelengths may easily propagate through the HIGP surface gaps and atten-

uate within the structure, or exit from the sides of the plate. The results also show that the

HIGP has a null at its resonant frequency while the PEC and RAM targets have a peak

at the same frequency. Since lobing patterns are caused by constructive and destructive

interference of edge diffractions, the null may be attributed to the significant reduction of

traveling waves when the HIGP is at resonance.

Perhaps most interesting is the fact that the first observed null was very deep for the

HIGP. At 18.9◦, the HIGP had a - 40 dB null at about 9 GHz. The RAM had a null of only

-27 dB for the same test. The HIGP not only reduced surface waves, but also provided a

significant RCS reduction compared to the RAM in some cases. The structure may lend

itself to a directional nulling application.
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    Front side
(HIGP & RAM)

   Front side
(HIGP & RAM)

                 Back side 
           (ground planes)

Traveling Waves

At 13.2 GHz, peak traveling waves ocurr at +/- 19 degrees
of grazing angles (90 and 270 degrees). 

(a) RCS at fR, 13.2 GHz.

    Front side
(HIGP & RAM)

   Front side
(HIGP & RAM)

Traveling Waves

(b) RCS at fL, 10.5 GHz.

Figure 8 RCS of HIGP (black) vs. RAM/PEC plate (red) at HIGP resonant fR and lower cut-

off frequency fL. Horizontal polarization used in all measurements.

22



Back edge return 

Front edge return

(a) HIGP target return.

Back edge return 

Front edge return

(b) PEC target return.

Figure 9 Down range plots with targets oriented at the predicted peak grazing angle, θ = 18.9◦,

of the HIGP at resonance. Based on a data collected over the 6-18 GHz band.
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Figure 10 RCS of HIGP (black), PEC (green), and RAM (red) targets at peak grazing angle, θ

= 18.9◦, for the HIGP resonant frequency fR = 13.2 GHz.

As shown in Table 4, all measured RCS values were relatively close to their pre-

dicted values. The measured broadside RCS values for the PEC plate were within 1 dB

of predicted values. The RAM measured values were within 2-4 dB–more accurate at the

lower frequencies. As hypothesized, the HIGP RCS values were lower than PEC values–

about 2-4 dB lower. Nearly all measured edge-on values were in the -20 to -30 dB range;

edge-on values for each target were close to the predicted -21 dB value. No unexpected

behavior was observed with beamwidth or side lobe levels of the HIGP.

The individual beam widths (BW) and side lobe levels (SLL) did not appear to vary

between targets. Each BW was nearly identical for all three targets at a given frequency

and all 1st SLLs were about 13 dB down from peak levels, see Table 4. Unexpected

behavior was observed in other areas. Looking at Figure 8, the HIGP RCS was not sym-

metric about the broadside angle. The HIGP RCS was 3 to 5 dB higher from 270◦ to 350◦
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Table 4 Predicted and Measured RCS and Beamwidth (BW).

σbroadside [dBsm] σedge [dBsm] BW [deg]Target F [GHz]
Predicted Measured Measured Predicted Measured

PEC 10.5 9.2 8.2 -37/-41 10.7 10.6
PEC 13.2 11.2 10.1 -26/-27 8.5 8.5
PEC 16.0 12.9 12.1 -23/-24 7.0 7.0
RAM 10.5 -0.8 0.6 -37/-41 10.5 10.5
RAM 13.2 1.2 -1.0 -26/-27 8.5 8.5
RAM 16.0 2.9 -1.3 -23/-24 7.0 6.5
HIGP 10.5 <9.2 6.0 -26/-25 10.7 11.5
HIGP 13.2 <11.2 7.2 -29/-24 8.5 9.0
HIGP 16.0 <12.9 8.1 -29/-23 7.0 7.0

(1st null) than it was from 10◦ (1st null) to 90◦. The asymmetry was most pronounced at

the highest measured frequency. Outside of its bandwidth, the HIGP should behave as a

PEC plate. Even if the actual upper cut-off frequency is below the predicted 16.0 GHz,

the HIGP should have had a symmetric response about its broadside angle. One possible

cause is the defects in the HIGP (two small cavities). They may contribute differently to

the RCS depending on the orientation of the HIGP.

One last observation is that all of downrange plots clearly showed edge scattering in

the expected locations given by

d = L sin θ (14)

where d is the separation between front and back edge returns, L is the physical length

of the target, and θ is the angle of incidence. Referring to Figure 9, the distance between

peaks of the opposite edges is about 1.9” as expected for a 6” target illuminated at angle

of 18.9◦.

3.5 Conclusion

In conclusion, all measurements clearly indicate the HIGP suppressed, but did not

eliminate, surface traveling waves. At its resonant frequency, the structure provided a

significant traveling wave reduction compared to a PEC plate of the same dimensions,
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but showed no further reduction at its cut-off frequencies. The HIGP also provided RCS

reduction compared to a PEC target and in some cases it provided greater RCS reduction

than a RAM treated target. At broadside, pattern-cuts indicate an RCS reduction of 2 to

3 dB lower than that of a PEC plate. Results also indicate the HIGP surface had no effect

on the beam width and side lode levels. Finally, HIGP surface defects, in the form of

cavities, may significantly increase its RCS. Overall results indicate that a HIGP based

antenna may be one solution towards an LO antenna design.
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IV. Methodology

Chapter II looked at reported bandwidth and computational modeling of high impedance

ground plane antennas found in recent literature. This chapter details the approach used

in developing and testing broadband HIGP antennas. Since this research brings together

work from two separate theses, one based solely on computational modeling, the other

based entirely on experimental measurements, trade-offs in design are made to satisfy

fabrication requirements, along with experimental and computational limitations.

Section 4.1 derives the HIGP and bowtie antenna designs. Section 4.2 details the

fabrication process. Computational methods are discussed in Section 4.3. Finally, Sec-

tion 4.4 outlines measurement techniques.

4.1 Antenna Design

A two step process matches separate analytic designs of the HIGP and bowtie an-

tenna. First, a HIGP is designed for a desired resonant frequency and bandwidth. The

bowtie antenna is subsequently designed around the HIGP resonant frequency. Each step

in the process comes with its own engineering approximations. As such, the design pro-

cess gives a first order approximation–a starting point.

4.1.1 HIGP Design. Wilmhoff’s proposed HIGP design is based on the Sieven-

piper equations (1)– (6) described in Section 2.1. According to his calculations, Wilmhoff

projects a HIGP resonant frequency of 3.0 GHz and bandwidth of 48%; however, an error

in the calculation is noted and discussed later in this section.

The structure consists of periodically spaced triangular elements oriented between

two substrates and connected to a ground plane using vias, see Figure 11. The top sub-

strate is 1.5 mm thick, has a surface dimension of 7.63cm × 22.9cm, and has a relative

permittivity of 2.0 within the operating band. The bottom substrate is 7.63 mm thick,

has the same surface dimensions as the top substrate, and has a relative permittivity of 4.9.
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Figure 11 Top View of Wilmhoff HIGP design.

The elements are equilateral triangles with edge lengths of 8.4 mm. Adjacent elements are

separated by a 0.5 mm gap, and have via-to-via spacings of 5.4 mm. The HIGP structure

is mounted in a metallic cavity, with the antenna layer (described in section 2.2) flush with

the top surface of the cavity. Parameters that apply to the Sievenpiper design equations

are summarized in Table 5.

Table 5 Wilmhoff HIGP Design Parameters.

Parameter Symbol Value

Substrate thickness t 7.63 mm

Relative Permittivity εr 4.5

Element Edge Length w 8.4 mm

Element Spacing g 0.5 mm

Via Spacing a 5.4 mm

Correction Factor F
√

3
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An error in the proposed HIGP design is noted at this point. Using the values in

Table 5 and Equations (5) and (6) in Section 2.1, the HIGP has a designed resonant fre-

quency of 1.8 GHz and bandwidth of 28% rather than the proposed values of 3.0 GHz and

48% respectively. Whether intentional or not, Wilmhoff does not use the proper correction

factor (F) in calculating sheet capacitance. His calculated values are obtained using a cor-

rection factor of 1/
√

3 rather than
√

3; however, the former applies to hexagonal elements,

while the later is the correct value for triangular elements [14]. Unfortunately, the error

was not found until the final stages of this research. Much of the results in Chapter V are

based on the mismatch between the antenna and HIGP.

4.1.2 Bowtie Antenna Design. A bowtie antenna is an ideal choice for a HIGP

backed antenna. Its broadband characteristics are well known and it can conveniently

overlay triangular HIGP elements. The second point becomes an essential feature when

designing a one layer, or integrated, HIGP antenna described later.

In order to precisely overlay equilateral HIGP elements, the two halves of the bowtie

must also consist of equilateral triangles. In other words, a bowtie with a flare angle (α) of

60◦ is required. Using experimentally determined results from Brown and Woodward [2],

the maximum impedance value of a bowtie with a 60◦ flare angle occurs when it has an

electrical length of 120◦, see Figure 12. The antenna is at its first resonant wavelength at

this point and reaches an input impedance of 185 + j0 Ω.
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(a) Measured Resistance.

(b) Measured Reactance.

Figure 12 Measured Impedance vs. Electrical Length of Bowtie Antenna [2].
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The electrical length is the product of wavelength and physical length, divided by

the guided wavelength given by

E◦ =
360◦A

λg

(15)

where E is the electrical length in degrees, A represents the physical length in meters, and

λg represents the guided wavelength. Separating the guided wavelength into its free space

wavelength and material proprties, the bowtie electrical length is given by

E◦ =
360◦A

λo√
εr

=
360◦A f

√
εr

c
(16)

where εr is the relative permittivity of the antenna substrate, and λo, f, and c represent the

free space wavelength, frequency, and velocity of light respectively.

With the resonant frequency and substrate permittivity already established in the

HIGP design step, the antenna length remains as the only parameter available to optimize

the bowtie antenna. Setting E◦ = 120◦ in Equation (16), the antenna length required for a

desired resonant frequency is given by

A =
108

fo
√

εr

(17)

where again A is in meters, and fo is the free space resonant frequency.

Wilmhoff’s proposed bowtie antenna has a physical length of 2.3 cm and electrical

length of 118◦ at 3.0 GHz. The antenna precisely overlays a set of 18 triangular HIGP

elements. In addition, the two halves of the antenna are feed 180◦ out of phase through

the two centermost vias of the HIGP structure.

Bandwidth of the bowtie antenna requires no further design consideration. Brown

and Woodward show that a bowtie with a 60◦ flare angle has a bandwidth on the order of

2:1 [2] when operating about its resonant frequency. This far exceeds the HIGP bandwidth.

The end result of the design process is a two layer structure designed to operate at

a desired center frequency and bandwidth while maintaining the properties of a HIGP:

31



provide 0◦ phase shift in the reflected wave; suppress surface travelling waves. An impor-

tant consideration that may be overlooked in design process is the material properties of

readily available materials.

4.2 Fabrication

The fabrication process involves several “best approach” determinations. Choos-

ing a substrate material requires more than just obtaining one of required thickness and

dielectric constant. Fabrication of the HIGP and antenna layers can be accomplished by

chemical or mechanical etching. Both have their advantages and disadvantages. In addi-

tion, integrating the two layers requires analyzing fabrication versus design trade-offs.

4.2.1 Material Selection. Several factors should be taken into account when

selecting a substrate material. Obtaining a material of arbitrary thickness and dielectric

constant can be difficult if not impossible. Readily available high frequency laminates

come in standard sizes and in a limited number of dielectric constants. Materials can be

custom made, but this requires bulk orders. Obtaining custom designed materials proved

beyond the financial means and time constraints of this project.

A study of materials science reveals that all dielectric materials, even of the same

dielectric constant and thickness, are not equal. Depending on their composition, the

permittivity of any two substrates can vary quite differently with a change in temperature

and frequency. As an example, the dielectric constant of FR4 varies by approximately 6%

over the 1 to 5 GHz band, while the dielectric constant of Rogers RO4003 varies less than

1% over the same band [5]. Other properties that vary among materials include: dielectric

breakdown, dispersion factor, loss tangent, and polarization just to name a few [8]. Loss

tangent, in fact, is another important design consideration that is frequency dependent.

Materials obtained for prototypes in this research are carefully selected from product

brochures of several companies. Most of the substrate materials were obtained free of

charge from Rogers Corporation. Their product line includes materials with parameters
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that closely match those derived in the design process. In addition, Rogers provided a

wealth of knowledge on aspects of material selection and fabrication.

The two layer antenna prototypes require two different substrate materials. The bot-

tom substrate is 300 mil thick version of Rogers TMM-4. The material is a ceramic based

material and maintains a dielectric constant of 4.5 across the operating 2 GHz to 5 GHz

band. The top substrate is a 60 mil thick version of Rogers RT/Duroid 5880. RT/Duroid is

composed of a Teflonr based substrate and exhibits a dielectric constant of 2.2 within the

desired operating band. Both materials are available in the required thickness, but neither

provides the exact relative permittivities called for in design process–refer to Section 4.1

of this chapter. Material with dielectric constant of 4.9 is readily available, but not in 300

mil thickness.

Two options exist for obtaining the correct thickness and dielectric constant for the

HIGP substrate: first, use a single 300 mil thick substrate (TMM-4) that has a relative

permittivity of 4.5; second, stack five 59 mil thick substrates (FR4) each having a relative

permittivity of 4.9. Both types of material were available. Both presented their own advan-

tages and disadvantages. The fiberglass based FR4 has the exact dielectric constant called

for in the HIGP design, but falls slightly short in the thickness parameter. The TMM-4 has

the exact thickness called for in the design, but its dielectric constant is not optimum for

the design. A sensitivity analysis shows the difference in performance between the two

options is negligible, see Figure 13. Rogers TMM-4 is selected to avoid possible errors

introduced from inconsistent gaps, warping between layers, and to ease the fabrication

process.
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Figure 14 Top view of bowtie antenna prototype.

4.2.2 Bowtie Antenna Fabrication. The bowtie antenna is fabricated on a dou-

ble clad RT/Duroid 5880 substrate, see Figure 14. The substrate is 60 mils thick and has

1-ounce copper cladding on each side. The triangular structure of the antennas is mechan-

ically etched on one side of the printed circuit board, while the entire cladding is removed

from the other side. Two holes, 40 mil in diameter, are drilled in the bowtie to accept

the antenna feeds. Although all prototypes tested during this research were fabricated by

means of mechanical etching, it is not the best choice for making the bowtie structure.

Mechanical etching is not ideal for removing large areas of cladding. First, it’s

very time consuming. Second, the process is very sensitive to equipment set-up. The

circuit board must lie perfectly flat on the surface of the milling table, otherwise uneven

clad and substrate removal occurs. Setting the depth of the milling router bit also plays

a major role in the quality of final product. Too much depth creates rows of thin troughs

in the surface, while too little depth may not fully etch cladding and inadvertently allow

electrical continuity between surface elements. Chemical etching does not share the same

set of drawbacks.
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Figure 15 Chemical Etching Sample.

Bowtie patch antennas are relatively easy to fabricate using chemical etching. Sev-

eral high quality antennas were fabricated by this process. As seen in Figure 15, the

surfaces do not have grooves or troughs. Unlike the mechanical etching process, chemical

etching only removes copper from the printed circuit board. The process results in a very

smooth surface. After investing three weeks learning the equipment and process, a usable

bowtie antenna could be fabricated in about 30 minutes. In the end, however, mechanical

etching provided more advantages than chemical etching.

Chemical etching was abandoned for three reasons. First, the on-hand equipment

could not process a 300 mil thick material–the thickness of the HIGP substrate. In addi-

tion, narrow gaps in the HIGP are much easier to etch through mechanical milling. Finally,

mechanical etching allowed for more precise alignment in overlaying the bowtie onto the

HIGP, as well as aligning drill holes in the two structures.
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Figure 16 Top View of HIGP Prototype.

4.2.3 HIGP Fabrication. Shown in Figure 16, the HIGP is fabricated on a

double clad TMM-4 substrate. The substrate is 300 mils (7.62 mm) thick and has 1-

ounce copper cladding on each side. The triangular elements are mechanically etched

onto one surface using a milling machine. Vias are fabricated by drilling registered holes

using milling equipment, manually inserting wire into each hole, soldering the ends to

each side of the substrate, and finally sanding the excess solder from the surfaces. Each

HIGP required about one day to fabricate–the vias demanded the most time and labor.

Unfortunately the material is too thick and dense to fabricate vias with available through-

hole equipment. In addition, substituting a conductive epoxy in place of hard wires failed

to produce good quality vias.

Several attempts were made at filling the via holes with a silver-filled epoxy. The

epoxy, made by Epoxies Etc. (#40-3905), has a volume electrical resistivity of less than

1 × 10−4 ohm-cm. Forming vias with the epoxy is far less labor intensive, but consumes

more time. The cure time of the epoxy is about 18 hours. However, the end product

was less reliable than with the wire and solder method. Resistance testing of epoxy filled

vias varied widely. Typical values ranged from 3 to several thousand ohms. In addition,
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each fabricated board typically had a 15% failure rate (no electrical continuity) in vias.

Resistance values for hard wire vias were on the order of tenths of an ohm–within the

error margins of the ohm meter.

The milling equipment is software driven and requires input via a computer auto-

mated design (CAD) file. Ben Wilmhoff provided a CAD file of his proposed HIGP an-

tenna design along with a freeware CAD package (CADStd Lite c©). Minor adjustments are

required after importing the design into the milling equipment’s CAD software (IsoPro c©).

Along with CADStd c© and IsoPro c©, AutoCAD c© is used in the the fabrication process.

4.2.4 Integrating the Structure. Final steps in the fabrication process include

bonding the two substrates and attaching a feed structure. After a long conversation with

Mr. Ed Sandor, Technical Representative for Rogers Corporation [13], a non-permanent

bonding method was chosen over permanent bonding. The selected method simplifies

fabrication. Permanent bonding methods for Teflonr based materials, such as RT/Duroid,

require processes involving either specialized high temperature equipment, and/or special

adhesives. On the other hand, non-permanent bonding does not require any equipment or

adhesives.

Bonding is simply accomplished by applying a thin film of Vaseline petroleum jelly

between the surfaces and clamping the two boards together. The Vaseline eliminates air

pockets between the two boards. In addition, its dielectric constant is nearly equal to that

of RT/Duroid 5880. This bonding method also allows for easy interchange of different

HIGP and antenna boards.

The feed structure consists of rigid coaxial lines and a phase splitter, see Figure 17.

The outer shields of equal length coaxial lines are inserted through the bottom of the

HIGP board and soldered to the two inner HIGP elements. The center conductors are

then soldered to the bowtie antenna. Coaxial insulation extends above the HIGP layer and

slightly into the bowtie layer. This approach prevents the center conductors from shorting

against HIGP elements. Finally, the coaxial lines are attached to a broadband phase shifter.
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Figure 17 Antenna Feed Structure.

A Narda Broadband 180 Degree Hybrid provides the required phase shift between

antenna feeds. This device splits an input signal equally and provides two outputs that have

a 180◦ phase difference. The advertised operational band is from 2 to 18 GHz. Testing the

on-hand device at 3 GHz produces the correct outputs.

The final product is then mounted in an anechoic chamber for pattern measurements.

But, well before that takes place, the antenna is tested by computational methods.

4.3 Computational Predictions

The complexity of HIGP surface geometries prevents an easy closed form solution

to their radiation integrals; computational predictions are instrumental in evaluating these

designs.

The structures are modeled using WIPL-D and Prism. A demo version of WIPL-D

enables a “quick look” at the bowtie structure over an ideal PMC ground plane. It employs
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and solves the appropriate frequency-domain surface integral equation (SIE) using the

moment method and entire-domain polynomial basis functions [7]. It has the advantage

of fast run times. Using a single processor, 1.3 GHz, 640 MB RAM personal computer, a

typical run time is on the order of minutes for a solution of 700 unknown currents. On the

other hand, the demo version cannot solve the number of unknowns involved in the HIGP

structure.

Prism is a FORTRAN based code that provides greater flexibility and capability. It

is a finite element-boundary integral (FE-BI) program designed for conformal, slot and

cavity, antenna analysis [17]. A disadvantage is that individual run times are on the order

days for the models simulated in this thesis. This, despite the fact that Prism frequency

sweeps were divided into 16 sub-bands of 4 frequencies each and run on multi-processor

high performance computers. In addition, the process of analyzing an antenna in Prism

requires several steps using additional software, see Figure 18.

4.3.1 Antenna Radiation Pattern. Frequency sweep and pattern-cut measure-

ments are conducted using WIPL-D and Prism. Frequency sweeps are performed across

the 2 to 5 GHz band. The frequency steps range between 10 to 250 MHz depending on

the particular circumstances. For instance a 10 MHz frequency step is used where there

is a high rate of change in gain verse frequency. On the other hand, a 250 MHz step is

sufficient in many parts of the frequency band.

Pattern-cut data is computed during the same run as the frequency sweeps. The cal-

culations cover the the top hemisphere of the antenna. For Prism, this covers the elevation

(θ) range of −90◦ to 90◦. In the WIPL-D coordinate system, the top hemisphere is covered

by the elevation range of 0◦ to 180◦. Both programs use the positive x-axis at z = 0 as the

φ = 0◦ coordinate. All computational runs collect both H-plane and E-plane data.

4.3.2 Input Impedance and Return Loss. The computational results are based

on a 50 Ω characteristic line impedance, but a matched line and antenna impedance condi-

tion is simulated through post processing. First, a band containing the broadest resonance

40



 
 

 

 

 

 

 

 

 
 

*.dfx file 

*.xyz  vertices file for each layer 

*.prj   *.geo   *.ref   *.pts   *.edg  files 

*.grd file 

*.mak file 

 
 

*.msh file 

*.mon file 

 

*.sfc   *.pat   *.zin   files 

 

 

*mod.grd file 
 

 

- Input impedance
- Return loss
- Frequency sweeps
- Pattern-cuts
- Aperture fields

Desired
  Plots

 MATLAB

   Prism
Solver Run

    Prism
Set-up Run

MATLAB

SkyMesh2

MATLAB

  Dxf2xyz

CadSTD Lite

Concept

   MATLAB

   Editor

Figure 18 Prism Modeling process. Required I/O files of each stage are identified with (*.).
MATLAB function required for I/O interface between programs and data processing
for plotting.

41



region is selected from computed input impedance. Referring to Figure 19, a good choice

is the band from 3.5 to 4 GHz. It is close to the desired operating frequency and has broad-

band characteristics; the peak of Re{Zin} is relatively broad, and the Im{Zin} goes through

a zero cross-over at a relatively low rate of change with respect to frequency. Next, the

input impedance data is converted to return loss by replacing the characteristic impedance

value of 50 Ω to a value that best matches the impedance in the selected operating band.

Using transmission line theory [9], input impedance is converted to return loss by

RL = −20 log
10
|Γ| = −20 log

10

∣

∣

∣

∣

ZL − Z0

ZL + Z0

∣

∣

∣

∣

(18)

where RL is return loss in dB, Γ is the voltage reflection coefficient, ZL is antenna input

impedance, and Z0 is the characteristic line impedance. So, using Equation (18), the

computed input impedance data is converted to return loss by replacing the characteristic

impedance value of 50 Ω to a value that best matches the impedance at the peak of the

resonance band.

4.3.3 Bandwidth. Antenna bandwidth is calculated as a -9.5 dB return loss band

about the operating frequency. The bandwidth is expressed as a percentage is given by

B =

(

fU

fL

− 1

)

100 (19)

where B is bandwidth, fU is the upper cut-off frequency, and fL is the lower cut-off fre-

quency.

As with the design process, computational models involve assumptions and approx-

imations. Experimental measurements can provide strong support to antenna synthesis.

4.4 Experimental Measurements

The AFIT microwave laboratory provides all necessary equipment to evaluate the

HIGP antennas. The anechoic chamber allows accurate radiation pattern measurements,
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while other equipment such as network analyzers allow a “quick look” at the various

antenna characteristics.

The anechoic chamber utilizes an HP8510B Network Analyzer, a standard gain

horn, a mechanical turntable, and a personal computer. The Network Analyzer and turntable

are computer-controlled using National Instruments’ Labviewr software, see Figure 20.

Antennas under test are mounted in a metallic circular test body. The geometry of the test

body reduces edge diffraction and approximates scattering from an infinite PEC plane.

The test body is supported by a foam column.

The following coordinate system applies to antenna measurements in the chamber:

the antenna surface is in the XY-plane, and the rotation, or azimuth, is in the θ direction

with antenna broadside at θ = 0◦. Changing between horizontal and vertical polarizations

is accomplished by rotating the horn antenna by 90◦.

4.4.1 Antenna Radiation Pattern. Similar to the RCS measurements described

in chapter III, antenna performance is characterized using two types of S21 measurements:

frequency sweeps and pattern-cuts. Frequency sweeps are conducted over the 2 to 5 GHz

band and with the antenna oriented at θ = 0◦. The frequency band is swept at 3.75 MHz

intervals providing 801 data points within the measured band. Antenna pattern-cut mea-

surements are taken over an azimuth range of −90◦ to 90◦ at 1◦ intervals.

Both E-plane and H-plane measurements are conducted for all frequency sweeps

and pattern-cuts. Data from each measurement is imported into MATLAB c© for post-

processing and plotting. In addition, data is calibrated using the calibrated response of a

second standard gain horn.

Prior to conducting radiation pattern measurements, each antenna is tested on a

stand alone HP8720C Network analyzer.

4.4.2 Return Loss and Input Impedance. Return loss measurements are con-

ducted across the same band and interval as the frequency sweeps, 2 to 5 GHz and
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3.75 MHz respectively. The S11 measurements provide return loss data, which in turn

provides antenna input impedance and, to some extent, resonant frequency data. Results

are presented in the form of return loss versus frequency and in the form of Smith Charts.

4.4.3 Bandwidth. The bandwidth is estimated through post processing of the

return loss data. As with the anechoic chamber measurements, all network analyzer mea-

surements are referenced to a 50 Ω characteristic line impedance. Input impedance of the

HIGP antennas under test are in the 200 to 500 Ω range. The mismatch in impedance

between the antennas and transmission line shows up as narrow operating bands in the

return loss plots. An operating band is defined as a band of frequencies with a -9.5 dB or

greater return loss. The same process of simulating a matched impedance condition used

in computational data is also applied to the experimental data.
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V. Results and Analysis

Chapter IV presented computational and experimental methods used in evaluating anten-

nas. This chapter presents results using such methods. Several types of antennas are mea-

sured and evaluated. In some cases analysis is based on results from both computational

and experimental methods presented in Chapter IV. In other cases only experimental re-

sults or computational results were obtained.

An iterative design approach is used in developing the antennas. First the antenna

is modeled and tested through computational methods. Next, a prototype is fabricated

having the same dimensions and material parameters as derived in the analytic design

stage. Next, modifications to the antenna occur based on analysis of measured results.

In addition, individual layers of the structure of known characteristics, such as the bowtie

over a substrate, are measured separately to evaluate the accuracy of the modeling process.

In an ideal case, the entire process is repeated with the development and testing of a refined

prototype. Time did not allow refinement of antennas in most cases.

5.1 Bowtie above Substrate and PEC Ground Plane

Computational and experimental measurements of a simple bowtie antenna over a

substrate and PEC ground plane provides an answer to a key question: How well do results

match between the two computational methods and experimental methods? Although time

did not permit fabrication and experimental measurement the antenna, results and analysis

of the two computational methods are provided in the following sections.

5.1.1 WIPL-D Results. WIPL-D allows a quick and easy analysis of the an-

tenna, but it is also the least robust of the methods. Since the demo version is limited to a

maximum of 700 unknown currents, a “basic model” is used in modeling the structure as

shown in Figure 21. A limit in the electrical size also required the substrate to be reduced

to physical dimensions of 3.3”×2.35” rather then the fabricated and Prism model dimen-
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Figure 21 WIPL-D model of bowtie antenna over substrate and ground plane. Green mesh rep-
resents metallic plates, red mesh represents substrate material. As shown, symmetry
allows modeling 1/2 of structure.

sions of 6”×3”. The bowtie is 120◦ at 3 GHz and has a flare angle of 60◦. Symmetry about

the X-axis allows modeling of only one half of the structure. The bowtie, feeds, and finite

ground plane consists of infinitely thin composite metallic plates. Dielectric plates form

the outer boundaries of the substrate. The substrate is modeled with a dielectric constant

of 4.5 and thickness of 300 mils. Current is provided via the basic generator option set

to an amplitude of one volt. The voltage is fed at the center of the wire connecting the

two halves of the bowtie. The result is a 180◦ phase difference in current between the two

halves.

The computational results are in very good agreement with the analytical design.

The antenna has a resonant frequency of 3.0 GHz which matches the value derived in

Section 4.1.2, see Figure 22(a). The imaginary part of input impedance has a zero cross-

over at 3.0 GHz, while the real part has a peak resistance of 265 Ω at 2.85 GHz. Referring

to Figure 22(b), matching the antenna to a 250Ω line impedance results in a -9.5 dB return

loss band from 2.3 to 3.15 GHz. The 37% bandwidth is lower than the predicted HIGP
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Figure 22 WIPL-D: Input impedance and return loss of bowtie antenna over 300 mil thick,
D.K. 4.5 substrate and PEC ground plane. Return loss calculated under matched
impedance condition.

bandwidth (48%) of the Wilmhoff two-layer HIGP design and would therefore limit the

bandwidth of the combined HIGP and bowtie antenna structure.

The 265 Ω peak resistance value is higher than the value (185 Ω) experimentally

measured by Brown and Woodward for an antenna of the same electrical length (120◦)

and flare angle (60◦), see Figure 12 in Section 4.1.2. The difference in input impedance

may be attributed a difference in feed locations, and in the fact that the bowtie is mounted

on top of a substrate rather than in air.

Antenna pattern-cuts at 2.3 GHz are shown in Figure 23(b) and 23(c). A peak gain

of 5 dB gain occurs at broadside [WIPL-D coordinate system puts broadside at θ = 90◦].

The broadside gain from 1 to 5 Ghz is shown in Figure 23(a). Unlike return loss values,

the gains are not recalculated under a matched impedance condition. Higher antenna gain

can be expected when the bowtie input impedance is matched to the line impedance.
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Figure 24 Prism Model, Top view of bowtie antenna over substrate and ground plane. Copper
mesh represents metallic plates, gray mesh represents substrate material.

5.1.2 Prism Results. The Prism model is more representative of the actual

bowtie prototype. First, the antenna is modeled as a cavity-backed surface mount antenna.

It is bottom fed with feeds modeled in the same locations as the prototype. The substrate

has a dielectric constant of 4.5 and dimensions of 6”×3”×0.3”. The bowtie The bowtie is

120◦ at 3 GHz and has a flare angle of 60◦. However, as with WIPL, metallic surfaces are

modeled as PEC plates and substrates are modeled as a lossless dielectric. See Figure 24

for mesh diagram.

Comparing the WIPL and Prism models, Figures 21 and 24, the bowties are not

oriented along the same axes. The bowtie is symmetric about the x-axis in the WIPL

model and is symmetric about the y-axis (with a 3.6” offset) in the Prism model. As such,

radiation patterns are referred to in terms of E-plane and H-plane patterns rather than in

terms of φ0 and φ90 pattern cuts. The E-plane and H-plane are the planes containing the

electric field and magnetic field vectors respectively [16]. Referring to Figure 24, the

E-plane is the XZ-plane that cuts through the centroid of each bowtie halve. The H-plane

is perpendicular to the E-plane and cuts through the center of the bowtie tips.
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Figure 25 Prism input impedance and return loss of bowtie antenna over 300 mil thick, D.K.
4.5 substrate and PEC ground plane.

The Prism results are in poor agreement with the designed performance and WIPL

results. The antenna achieves resonances at 2.2 GHz and 4.4 GHz rather than at the in-

tended 3.0 GHz. Referring to Figure 25(a), the antenna is poorly matched to a 50 Ω line

impedance. In fact, the return loss is above -9.5 dB through-out the 1.2-5 GHz band, see

Figure 25(b). In terms of standing waves, the antenna VSWR is greater than 2:1 across the

entire band. The impedance mismatch factor q may be used to further highlight the poor

efficiency of the antenna. The mismatch factor is a figure of merit identifying the fraction

of power transferred at the antenna feed and transmission line junction [16]. The q factor

is given by

q = 1 − |Γ|2 = 1 −
∣

∣

∣

∣

ZL − Z◦

ZL + Z◦

∣

∣

∣

∣

2

(20)

where q is the impedance mismatch factor, ZL and Z◦ are the antenna input impedance and

line impedance, respectively in ohms. The simulated results achieve a q factor of 0.33, or

33% at the 2.2 GHz resonance. A significant portion of the transmit signal does not cross

the antenna feed junction.
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Although the peak input impedance (250Ω) at the second resonance is the same

value as computed in WIPL, the bandwidth is much lower. Matching the antenna to

a 250 Ω transmission line provides a -9.5 dB band from 4.2-4.6 GHz (9.5%), see Fig-

ure 26(a). The Prism model results in a bandwidth that is about 1/4 of that computed in

WIPL.

The broadside gains of each model do not show agreement, but do reveal a common

gain at 2.3 GHz 27(a). The radiation pattern results compare favorably when both methods

have an overlapping operating band. As shown in Figure 27(b) and 27(c), the WIPL and

Prism pattern cuts are very similar in form. The E-plane patterns nearly overlap while the

H-plane patterns differ by less than 0.5 dB at broadside. In fact the H-plane patterns differ

no more than 1.5 db at all elevations. The WIPL H-plane pattern has the least variance

across all elevations and is very close to a constant (isotropic) gain. NOTE: The WIPL

elevation coordinate system was changed to match that of Prism i.e broadside at θ = 0◦

rather than at θ = 90◦.

Overall, the two computational methods do not match well, but do produce simi-

lar results in limited cases. Possible causes in dissimilarities are differences in modeling

geometry and fed methods. The Prism model not only has a larger surface area, but also

is configured as a cavity mount antenna. The WIPL model is configured with substrate

enclosed in a metallic box which rests on top of a ground plane. The two models should

have different behaviors at their respective substrate boundaries. The difference in phys-

ical sizes also leads to different resonant modes within the enclosed substrate cavities.

Finally, the differences in modeling the feeds can have a significant impact on the input

impedance.
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Figure 27 Broadside gain and radiation pattern comparisons: WIPL-D vs. Prism.
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Figure 28 Bowtie antenna (top) and HIGP (bottom) layers of two-layer HIGP antenna design.

5.2 Bowtie above Substrate and HIGP

The primary goal of this thesis was to demonstrate a relatively large bandwidth

HIGP antenna through both experimental and computational methods. Unfortunately the

computational methods were unable to model the two-layer design, and a design error

prevented any useful analysis of the measured results. The error was noticed too late in

the research to allow fabrication and testing of a corrected design, but a new two-layer

design is developed analytically and presented.
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5.2.1 Measured Results. The bowtie antenna is designed for a 3 GHz reso-

nant frequency and has an estimated 50% bandwidth. The HIGP design error leaves it

with a 1.8 GHz resonant frequency and 28% bandwidth rather than the proposed values of

3.0 GHz and 48% respectively. The mismatch in the operational bands of the two struc-

tures effectively attenuates fields at the antenna. The structure behaves like two bandpass

filters in series that are tuned for greatly separated bands. Although measured results of

the Wilmhoff design are presented in Figure 29, they do not support any useful evaluation.

5.2.2 Introduction of New Two-layer Design. The design error presented an

opportunity to develop a design based on lessons learned during past fabrication and mod-

eling efforts. Besides matching the resonant frequency of the bowtie and HIGP, the new

design eases the fabrication process and reduces the electrical size in thickness–beneficial

in computational modeling.

The overriding philosophy during the process was to design around materials that

are both readily available and easy to work with. The thick ceramic substrate presented

several obstacles: could not chemically etch, automate drilling, use through hole platting,

or use conductive epoxy for vias. The material also requires special tools in order to cut.

The new design calls for a much thinner substrate and uses the same family of Teflonr

based material as the top substrate. Since bandwidth decreases with a decrease in substrate

thickness, a conscious trade-off was made between bandwidth and substrate thickness.

A secondary goal was to preserve the current surface geometry. Minimizing changes

in the geometry requires only minor modifications to the computational model and al-

lows the bowtie to remain over the same number of HIGP triangular elements. The only

changes in geometry involve the gap spacing, and subsequently the via spacing. The gap

was changed in-order to fine tune the resonant frequency and allow use of a standard

size milling bit. In addition, the change in gap spacing results in a slight, but negligible,

change in the bowtie length. See Table 6 for a comparison of the original and new design

specifications.
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Figure 29 Measured return loss, broadside gain, and 4.475 GHz radiation pattern of two-layer
design. HIGP and bowtie resonant frequencies mismatched.
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Table 6 Original and New HIGP Design Parameters.
Parameter Symbol Original Design New Design

HIGP resonance fH
◦ 1.77 GHz 3.03 GHz

Bowtie resonance1 fB
◦ 3.0 GHz at 118◦ 3.0 GHz at 121◦

HIGP bandwidth B 28% 20%
Substrate thickness t 300 mils 125 mils

Relative Permittivity εr 4.92 2.35
Element Spacing g 19.7 mils 10 mils

Via Spacing a 212 mils 202 mils
Bowtie length A 2.30 cm 2.25 cm

Although the new two-layer HIGP antenna design was neither tested, nor analyzed,

the one-layer version of the antenna was modeled. The results are quit promising.

5.3 Bowtie Integrated into HIGP Surface

In this section, a one-layer, or integrated, version of Wilmhoff’s two-layer HIGP

bowtie antenna is investigated. The antenna is placed in the plane of the HIGP rather than

above it. Golla introduced the concept in his thesis research of HIGP backed log-periodic

antennas in 2001 [4]. Two designs are analyzed: one using the original two-layer design

parameters, and one using the new parameters.

The integrated structures are very similar in design to the two-layer structures. The

HIGPs use the same design parameters as in the two-layer versions, see Tables 5 in Sec-

tion 4.1.1 and 6. The bowtie replaces 18 triangular elements in the HIGP layer. The

second substrate layer that contains the bowtie in the two-layer design is completely re-

moved.

5.3.1 Original One-Layer Design. Computational results alone show that the

integrated antenna does not achieve the predicted 28% bandwidth. Using the 9.5 dB re-

turn loss bandwidth as the figure of merit, the antenna operates efficiently from 3.53 to

1First resonance of a bowtie with a 60◦ flare angle occurs when electrical length is 120◦

2Material with permittivity of 4.5 was used during evaluation of original design. Material with permit-
tivity of 4.9 and thickness of 300 mils was not readily available.
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Figure 30 One-layer HIGP antenna mounted in antenna test chamber. Early prototype: no vias
and thin isolation boundary between HIGP and cavity.

4.11 GHz, see Figure 31. The calculated bandwidth, fu/f`, where fu and f` are the upper

and lower cut-off frequencies is 16.4% centered at 3.82 GHz. Considering the mismatch

in operating bands of the HIGP and bowtie, a bandwidth of 16.4% is relatively high.

The broadside gain and antenna radiation patterns at 3.75 GHz are shown in Fig-

ure 32. All results are based on a characteristic input impedance of 50 Ω. The widest

operating band is clearly in the 3.5 to 4 GHz range at which a gain of about 11 dBi

is achieved. Higher gain can be expected when the antenna is matched to a 250Ω line

impedance.

Measured results do not duplicate computational reults for the most part, see Fig-

ure 33. Measured return loss does track Prism results in some areas of the 2-5 GHz band,

but other results are less similar. Gain patterns require more effort to adequately compare

results. Data from the antenna range measurements were not calibrated. As such, both

computational and experimental gain data were normalized in order to allow analysis of
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(middle), and return loss at matched impedance condition (bottom).
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Figure 32 Prism broadside gain and 3.75 GHz radiation patterns of original one-layer design.
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Figure 33 Measured and computed return loss, broadside gain, and 2.65 GHz radiation pattern.
Characteristic impedance of 50Ω.

63



the general gain patterns. Results do reveal some similarity between computed and mea-

sured broadside gain and pattern-cuts, but further investigation is required to account for

differences in the computational model and prototype.

5.3.2 New One-Layer Design. Computational analysis of the newly developed

one-layer structure indicates a marked improvement in performance over the original ver-

sion. The first noticeable change is that the antenna input impedance has only one strong

resonance, see Figure 34. In fact, the resonance is very close to the designed frequency of

3 GHz.
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Figure 34 Input impedance of new one-layer HIGP antenna design.
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Figure 35 Computed input impedance for original and new one-layer HIGP antenna deisgns.

Comparing impedance between the two models, the new version has a much lower

peak resonance. Figure 35 shows the new design reaches a relatively low peak resis-

tance of 400 Ω compared to the 1200 Ω peak of the original version. The results may be

attributed to the closely matched operating band of the new HIGP design with its corre-

sponding bowtie. The lower peak resistance value allows easier matching to a transmission

line.

The computed gain and radiation patterns appear promising, see Figure 36. The gain

is relatively flat across the 2-5 GHz band. The result poses the question as to whether or not

the structure was modeled correctly in Prism. Experimental measurements may provide

a valuable second opinion of the gain response. Radiation patterns at 3.0 GHz provide a

very good response at the intended center frequency. The patterns are almost identical to

those of a bowtie over substrate peak resonance, see Section 5.1. One possible answer for

the similarities in patterns may be that the one layer HIGP antenna is only functioning as

a bowtie over a substrate–perhaps not influenced by the HIGP. The differences between

the original and new one-layer versions may be simply due to the difference in substrate

thickness and dielectric constants.
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Figure 36 Broadside gain and radiation patterns of the new one-layer HIGP antenna design.
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5.4 Conclusions

Although the new design parameters may lead to a HIGP antenna of the desired

resonance and bandwidth, more analysis is required. Initial results using computational

methods requires further support in the form of experimental measurements in order to

confirm the antenna design. In fact, the one player version may not lend itself to a HIGP

design. Analysis of the two-layer HIGP antenna along side of the one-layer version may

provide more insight into the HIGP performance.
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VI. Conclusion

HIGP based antennas provide a substantial amount of material for a research project. The

overall goal of demonstrating a large bandwidth HIGP antenna was not achieved; however,

progress was made in areas such as material selection, fabrication, and tying together

computational and experimental research for a high bandwidth HIGP antenna.

This research project set out to provide computational and experimental measure-

ments in support of a proposed two-layer HIGP antenna. The predicted bandwidth and

resonant frequency of the proposed design are 48% and 3 GHz respectively. Neither com-

putational nor experimental results support the predicted values. In fact, a close examina-

tion of the HIGP design equations revealed a mismatch in the HIGP and bowtie antenna

structures. The antenna should resonate at 3 GHz, but the HIGP design has a resonant

frequency of 1.8 GHz. Even when numerical and experimental results were in agreement,

the Wilmhoff design did not demonstrate a bandwidth greater than 16%. On the other

hand, a new design was presented which may significantly benefit future research in this

area.

A corrected design was developed late in the research. Several lessons learned were

applied in its development which ease the fabrication process and reduces computational

demand. Computational results of the new design applied to a one-layer version of the

HIGP antenna show an improvement over the original design. A two-layer version may

even achieve greater performance.

6.1 Recommendations and Future Research

This thesis incorporates many aspects of a design process. As such, an extensive

amount of time was devoted to learning new tools and concepts. That comes with the

territory. On the other hand, a significant portion of the research was consumed in trou-

bleshooting software. The following sections contain recommendations that could resolve
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some of the software issues. In addition, some possible areas of further research are pre-

sented along with advice on selecting the operational band of an antenna.

6.1.1 Computational Modeling Process. A golden opportunity exists to develop

a better modeling process. Much of this project was devoted to troubleshooting and cre-

ating a work-around for software inadequacies. In fact, the modeling process requires

several patches to enable input/output interface between software packages. Each patch

employs MATLABr code. The meshing capability of MATLABr may also be a suitable

replacement for SkyMesh2 c©. Such a change could provide two important advantages.

First and foremost, it may provide a better work-around for SkyMesh2 inadequacies re-

lated to a multi-layer HIGP structure. Second, it could eliminate some patches and allow

consolidating others into a single MATLAB script file. The entire process could be col-

lapsed into just three types of programs: a CAD package, MATLABr, and Prism. Much

of the ground work is already in place.

Another alternative involves an upgrade of WIPL-D. Limitations in the demo ver-

sion prevent modeling a HIGP surface. The professional version enables modeling of

such structures. In addition, an add-on module is available that directly reads in CAD

files. Unlike the software involved in the Prism modeling process, a WIPL-D upgrade re-

quires additional funding. A single license for the professional version with a CAD reader

comes with a price tag of $8,000.

6.1.2 HIGP Antenna Designs. From an antenna design aspect, analysis of the

corrected HIGP antenna is certainly recommended. The one-layer version has already

demonstrated good performance and the two-layer version may be even more promising.

Continued research may include new efforts such as EBG characterization, RCS analysis,

and impedance matching. The structure of the antenna allows impedance matching from

either a coaxial or etched balun. Relocation of the bowtie feed points provides another

option in changing the antenna input impedance. More challenging problems also exist.
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6.1.3 Selection of an Operational Band. Selection of an antenna’s operational

band requires a few trade-offs. As previously noted, available materials should be con-

sidered when deriving values for design parameters. In addition, research involving both

computational and experimental analysis combines the shortfalls of each method. Short-

falls of both methods should be taken into account when establishing an operational band.

Computational methods become increasingly taxed with increasing frequency. The

demo version of WIPL-D reaches its limit, 700 unknown currents, at about 5 GHz when

modeling a relatively small bowtie antenna over a PMC. Even a robust program, such as

Prism, can bog down at high frequencies. In order to maintain a consistent accuracy, the

physical mesh lengths must decrease proportionally with guided wavelength. At 5 GHz,

the HIGP structures in this thesis required solving a few thousand to tens of thousands of

unknown fields. Depending on available computing resources, these antennas require run

times on the order of days and even weeks. On the other hand, 5 GHz is too low for some

experimental measurements.

Much of the available microwave equipment at AFIT is targeted for X-band (8-

12 GHz) measurements. The AFIT RCS range has a lower frequency limit of 6.2 GHz due

to the horn antennas and RF hardware. The “mini-chamber”, AFIT’s antenna chamber, has

a lower cut-off of 2 GHz. Antenna measurements were also taken at the Air Force Re-

search Laboratory’s Radiation and Scattering Compact Antenna Laboratory (RASCAL),

but it too prevents measurements below 2 GHz. In addition, in-house network analyzers

can measure frequencies from 50 MHz to 20 GHz, but all associated calibration equipment

and waveguides are for the X-band measurements. Depending on the selected operational

band of the device under test, these hardware limits may or may not limit experimental

research.
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